Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pharmacol Exp Ther ; 389(1): 40-50, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38336380

RESUMO

B-cell acute lymphoblastic leukemia (B-ALL) is the most prevalent type of cancer in young children and is associated with high levels of reactive oxygen species (ROS). The antioxidant N-acetylcysteine (NAC) was tested for its ability to alter disease progression in a mouse model of B-ALL. Mb1-CreΔPB mice have deletions in genes encoding PU.1 and Spi-B in B cells and develop B-ALL at 100% incidence. Treatment of Mb1-CreΔPB mice with NAC in drinking water significantly reduced the frequency of CD19+ pre-B-ALL cells infiltrating the thymus at 11 weeks of age. However, treatment with NAC did not reduce leukemia progression or increase survival by a median 16 weeks of age. NAC significantly altered gene expression in leukemias in treated mice. Mice treated with NAC had increased frequencies of activating mutations in genes encoding Janus kinases 1 and 3. In particular, frequencies of Jak3 R653H mutations were increased in mice treated with NAC compared with control drinking water. NAC opposed oxidization of PTEN protein ROS in cultured leukemia cells. These results show that NAC alters leukemia progression in this mouse model, ultimately selecting for leukemias with high Jak3 R653H mutation frequencies. SIGNIFICANCE STATEMENT: In a mouse model of precursor B-cell acute lymphoblastic leukemia associated with high levels of reactive oxygen species, treatment with N-acetylcysteine did not delay disease progression but instead selected for leukemic clones with activating R653H mutations in Janus kinase 3.


Assuntos
Água Potável , Leucemia-Linfoma Linfoblástico de Células Precursoras , Criança , Humanos , Camundongos , Animais , Pré-Escolar , Acetilcisteína/farmacologia , Acetilcisteína/uso terapêutico , Janus Quinases , Taxa de Mutação , Espécies Reativas de Oxigênio/metabolismo , Células Precursoras de Linfócitos B/metabolismo , Janus Quinase 1/genética , Janus Quinase 1/metabolismo , Mutação , Janus Quinase 3/genética , Janus Quinase 3/metabolismo , Progressão da Doença
2.
Gene ; 900: 148131, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38216003

RESUMO

Precursor B cell acute lymphoblastic leukemia (Pre-B-ALL) arises from developing B cells and frequently involves mutations in genes encoding transcription factors. In this study, we investigated the function of mutations in the transcription factor IKZF3 (Aiolos), R137* and H195Y, discovered in a mouse model of pre-B-ALL. R137* IKZF3 mutation resulted in a truncated protein, while electrophoretic mobility shift assay showed that H195Y IKZF3 mutation resulted in a protein with altered DNA binding. 38B9 pre-B cell lines were generated expressing WT and H195Y IKZF3 proteins. Anti-IKZF3 ChIP-seq showed that H195Y IKZF3 interacted with a larger number of sites that were different than WT IKZF3. Treatment with interleukin-7 induced changes in gene expression in 38B9 cells expressing WT IKZF3, but did not induce any changes in gene expression in cells expressing H195Y IKZF3. Anti-STAT5 ChIP-seq showed that expression of H195Y IKZF3 resulted in redistribution of STAT5 binding sites in the genome. H195Y IKZF3 binding sites overlapped with a subset of STAT5 binding sites, including in the promoter of the Cish gene. These findings suggest that H195Y mutation of IKZF3 results in altered DNA binding specificity and altered binding of STAT5 to target genes.


Assuntos
Leucemia de Células B , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Animais , Camundongos , Sítios de Ligação , DNA , Expressão Gênica , Proteínas do Leite/genética , Mutação , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Fator de Transcrição STAT5/genética , Fator de Transcrição STAT5/metabolismo , Transativadores/genética
3.
EMBO J ; 42(24): e114462, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37934086

RESUMO

Mammalian cells repress expression of repetitive genomic sequences by forming heterochromatin. However, the consequences of ectopic repeat expression remain unclear. Here we demonstrate that inhibitors of EZH2, the catalytic subunit of the Polycomb repressive complex 2 (PRC2), stimulate repeat misexpression and cell death in resting splenic B cells. B cells are uniquely sensitive to these agents because they exhibit high levels of histone H3 lysine 27 trimethylation (H3K27me3) and correspondingly low DNA methylation at repeat elements. We generated a pattern recognition receptor loss-of-function mouse model, called RIC, with mutations in Rigi (encoding for RIG-I), Ifih1 (MDA5), and Cgas. In both wildtype and RIC mutant B cells, EZH2 inhibition caused loss of H3K27me3 at repetitive elements and upregulated their expression. However, NF-κB-dependent expression of inflammatory chemokines and subsequent cell death was suppressed by the RIC mutations. We further show that inhibition of EZH2 in cancer cells requires the same pattern recognition receptors to activate an interferon response. Together, the results reveal chemokine expression induced by EZH2 inhibitors in B cells as a novel inflammatory response to genomic repeat expression. Given the overlap of genes induced by EZH2 inhibitors and Epstein-Barr virus infection, this response can be described as a form of viral mimicry.


Assuntos
Linfócitos B , Proteína Potenciadora do Homólogo 2 de Zeste , Infecções por Vírus Epstein-Barr , Animais , Camundongos , Metilação de DNA , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Infecções por Vírus Epstein-Barr/genética , Herpesvirus Humano 4/genética , Histonas/metabolismo , Linfócitos B/efeitos dos fármacos , Sequências Repetitivas de Ácido Nucleico
4.
J Immunol ; 211(1): 71-80, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37195219

RESUMO

B cell development requires the ordered rearrangement of Ig genes encoding H and L chain proteins that assemble into BCRs or Abs capable of recognizing specific Ags. Igκ rearrangement is promoted by chromatin accessibility and by relative abundance of RAG1/2 proteins. Expression of the E26 transformation-specific transcription factor Spi-C is activated in response to dsDNA double-stranded breaks in small pre-B cells to negatively regulate pre-BCR signaling and Igκ rearrangement. However, it is not clear if Spi-C regulates Igκ rearrangement through transcription or by controlling RAG expression. In this study, we investigated the mechanism of Spi-C negative regulation of Igκ L chain rearrangement. Using an inducible expression system in a pre-B cell line, we found that Spi-C negatively regulated Igκ rearrangement, Igκ transcript levels, and Rag1 transcript levels. We found that Igκ and Rag1 transcript levels were increased in small pre-B cells from Spic-/- mice. In contrast, Igκ and Rag1 transcript levels were activated by PU.1 and were decreased in small pre-B cells from PU.1-deficient mice. Using chromatin immunoprecipitation analysis, we identified an interaction site for PU.1 and Spi-C located in the Rag1 promoter region. These results suggest that Spi-C and PU.1 counterregulate Igκ transcription and Rag1 transcription to effect Igκ recombination in small pre-B cells.


Assuntos
Cadeias kappa de Imunoglobulina , Células Precursoras de Linfócitos B , Camundongos , Animais , Células Precursoras de Linfócitos B/metabolismo , Cadeias kappa de Imunoglobulina/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição/genética , Recombinação Genética
5.
Immunohorizons ; 6(1): 104-115, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-38285436

RESUMO

Spi-C is an E26 transformation-specific transcription factor closely related to PU.1 and Spi-B. Spi-C has lineage-instructive functions important in B cell development, Ab-generating responses, and red pulp macrophage generation. This research examined the regulation of Spi-C expression in mouse B cells. To determine the mechanism of Spic regulation, we identified the Spic promoter and upstream regulatory elements. The Spic promoter had unidirectional activity that was reduced by mutation of an NF-κB binding site. Reverse transcription-quantitative PCR analysis revealed that Spic expression was reduced in B cells following treatment with cytokines BAFF + IL-4 + IL-5, anti-IgM Ab, or LPS. Cytochalasin treatment partially prevented downregulation of Spic. Unstimulated B cells upregulated Spic on culture. Spic was repressed by an upstream regulatory region interacting with the heme-binding regulator Bach2. Taken together, these data indicate that Spi-C is dynamically regulated by external signals in B cells and provide insight into the mechanism of regulation.

6.
WIREs Mech Dis ; 13(5): e1519, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34730294

RESUMO

Cell fate decisions during hematopoiesis are the consequence of a complex mixture of inputs from cell-intrinsic and cell-extrinsic factors. In rare cases, expression of a single transcription factor, or a few key factors, may be sufficient to dictate lineage differentiation in a precursor cell. The E26-transformation-specific-family transcription factor Spi-C has emerged as an example of a lineage-instructive factor involved in the generation of mature, specialized subsets of both myeloid and lymphoid cells. Spi-C can instruct differentiation of splenic precursors into red pulp macrophages responsible for phagocytosing senescent red blood cells. In the B cell compartment, Spi-C acts as a key regulator of cell fate decisions at the pro-B to pre-B cell stage and for plasma cell differentiation. Spi-C regulates key genes including Nfkb1, Bach2, Syk, and Blnk to regulate cell cycle entry and B cell differentiation. Here, we review the biology of the lineage-instructive transcription factor Spi-C and its contribution to mechanisms of disease in macrophages and B cells. This article is categorized under: Cancer > Molecular and Cellular Physiology Immune System Diseases > Molecular and Cellular Physiology Infectious Diseases > Genetics/Genomics/Epigenetics.


Assuntos
Regulação da Expressão Gênica , Fatores de Transcrição , Animais , Linfócitos B/metabolismo , Diferenciação Celular , Camundongos , Camundongos Knockout , Fatores de Transcrição/genética
7.
Mol Cell Biol ; 40(18)2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32631903

RESUMO

Precursor B cell acute lymphoblastic leukemia (B-ALL) is caused by genetic lesions in developing B cells that function as drivers for the accumulation of additional mutations in an evolutionary selection process. We investigated secondary drivers of leukemogenesis in a mouse model of B-ALL driven by PU.1/Spi-B deletion (Mb1-CreΔPB). Whole-exome-sequencing analysis revealed recurrent mutations in Jak3 (encoding Janus kinase 3), Jak1, and Ikzf3 (encoding Aiolos). Mutations with a high variant-allele frequency (VAF) were dominated by C→T transition mutations that were compatible with activation-induced cytidine deaminase, whereas the majority of mutations, with a low VAF, were dominated by C→A transversions associated with 8-oxoguanine DNA damage caused by reactive oxygen species (ROS). The Janus kinase (JAK) inhibitor ruxolitinib delayed leukemia onset, reduced ROS and ROS-induced gene expression signatures, and altered ROS-induced mutational signatures. These results reveal that JAK mutations can alter the course of leukemia clonal evolution through ROS-induced DNA damage.


Assuntos
Dano ao DNA , Janus Quinase 1/genética , Janus Quinase 1/metabolismo , Leucemia de Células B/metabolismo , Animais , Linfócitos B/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Janus Quinase 3/metabolismo , Leucemia de Células B/genética , Leucemia de Células B/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-ets/genética , Proteínas Proto-Oncogênicas c-ets/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transativadores/genética , Transativadores/metabolismo
8.
J Biol Chem ; 294(46): 17487-17500, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31586032

RESUMO

The DNA-binding protein PU.1 is a myeloid lineage-determining and pioneering transcription factor due to its ability to bind "closed" genomic sites and maintain "open" chromatin state for myeloid lineage-specific genes. The precise mechanism of PU.1 in cell type-specific programming is yet to be elucidated. The melanoma cell line B16BL6, although it is nonmyeloid lineage, expressed Toll-like receptors and activated the transcription factor NF-κB upon stimulation by the bacterial cell wall component lipopolysaccharide. However, it did not produce cytokines, such as IL-1ß mRNA. Ectopic PU.1 expression induced remodeling of a novel distal enhancer (located ∼10 kbp upstream of the IL-1ß transcription start site), marked by nucleosome depletion, enhancer-promoter looping, and histone H3 lysine 27 acetylation (H3K27ac). PU.1 induced enhancer-promoter looping and H3K27ac through two distinct PU.1 regions. These PU.1-dependent events were independently required for subsequent signal-dependent and co-dependent events: NF-κB recruitment and further H3K27ac, both of which were required for enhancer RNA (eRNA) transcription. In murine macrophage RAW264.7 cells, these PU.1-dependent events were constitutively established and readily expressed eRNA and subsequently IL-1ß mRNA by lipopolysaccharide stimulation. In summary, this study showed a sequence of epigenetic events in programming IL-1ß transcription by the distal enhancer priming and eRNA production mediated by PU.1 and the signal-dependent transcription factor NF-κB.


Assuntos
Interleucina-1beta/genética , Melanoma Experimental/genética , Proteínas Proto-Oncogênicas/genética , RNA Mensageiro/genética , Transativadores/genética , Animais , Linhagem Celular Tumoral , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Camundongos , Regiões Promotoras Genéticas , Células RAW 264.7 , Ativação Transcricional
9.
Exp Hematol ; 73: 50-63.e2, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30986496

RESUMO

The most frequently occurring genetic abnormality in pediatric B-lymphocyte-lineage acute lymphoblastic leukemia is the t(12;21) chromosomal translocation that results in a ETV6-RUNX1 (also known as TEL-AML1) fusion gene. Expression of ETV6-RUNX1 induces a preleukemic condition leading to acquisition of secondary driver mutations, but the mechanism is poorly understood. SPI-B (encoded by SPIB) is an important transcriptional activator of B-cell development and differentiation. We hypothesized that SPIB is directly transcriptionally repressed by ETV6-RUNX1. Using chromatin immunoprecipitation, we identified a regulatory region in the first intron of SPIB that interacts with ETV6-RUNX1. Mutation of the RUNX1 binding site in SPIB intron 1 prevented transcriptional repression in transient transfection assays. Next, we sought to determine to what extent gene expression in REH cells can be altered by ectopic SPI-B expression. SPI-B expression was forced using CRISPR-mediated gene activation and also using a retroviral vector. Forced expression of SPI-B resulted in altered gene expression and, at high levels, impaired cell proliferation and induced apoptosis. Finally, we identified CARD11 and CDKN1A (encoding p21) as transcriptional targets of SPI-B involved in regulation of proliferation and apoptosis. Taken together, this study identifies SPIB as an important target of ETV6-RUNX1 in regulation of B-cell gene expression in t(12;21) leukemia.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Proteínas de Ligação a DNA/biossíntese , Regulação Leucêmica da Expressão Gênica , Íntrons , Proteínas de Fusão Oncogênica/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Elementos de Resposta , Fatores de Transcrição/biossíntese , Apoptose/genética , Proteínas Adaptadoras de Sinalização CARD/biossíntese , Proteínas Adaptadoras de Sinalização CARD/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Cromossomos Humanos Par 12/genética , Cromossomos Humanos Par 12/metabolismo , Cromossomos Humanos Par 21/genética , Cromossomos Humanos Par 21/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Inibidor de Quinase Dependente de Ciclina p21/biossíntese , Inibidor de Quinase Dependente de Ciclina p21/genética , Proteínas de Ligação a DNA/genética , Guanilato Ciclase/biossíntese , Guanilato Ciclase/genética , Humanos , Proteínas de Fusão Oncogênica/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patologia , Fatores de Transcrição/genética , Translocação Genética
10.
Blood Cells Mol Dis ; 76: 82-90, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30853332

RESUMO

Differentiation of myeloid progenitor cells into macrophages is accompanied by increased PU.1 concentration and increasing cell cycle length, culminating in cell cycle arrest. Induction of PU.1 expression in a cultured myeloid cell line expressing low PU.1 concentration results in decreased levels of mRNA encoding ATP-Citrate Lyase (ACL) and cell cycle arrest. ACL is an essential enzyme for generating acetyl-CoA, a key metabolite for the first step in fatty acid synthesis and for histone acetylation. We hypothesized that ACL may play a role in cell cycle regulation in the myeloid lineage. In this study, we found that acetyl-CoA or acetate supplementation was sufficient to rescue cell cycle progression in cultured BN cells treated with an ACL inhibitor or induced for PU.1 expression. Acetyl-CoA supplementation was also sufficient to rescue cell cycle progression in BN cells treated with a fatty acid synthase (FASN) inhibitor. We demonstrated that acetyl-CoA was utilized in both fatty acid synthesis and histone acetylation pathways to promote proliferation. Finally, we found that Acly mRNA transcript levels decrease during normal macrophage differentiation from bone marrow precursors. Our results suggest that regulation of ACL activity is a potentially important point of control for cell cycle regulation in the myeloid lineage.


Assuntos
ATP Citrato (pro-S)-Liase/fisiologia , Ciclo Celular , Diferenciação Celular , Células Progenitoras Mieloides/citologia , Acetilcoenzima A/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Humanos , Macrófagos/citologia , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/fisiologia , RNA Mensageiro/metabolismo , Transativadores/metabolismo , Transativadores/fisiologia
11.
Blood Adv ; 2(21): 2798-2810, 2018 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-30355579

RESUMO

Precursor B-cell acute lymphoblastic leukemia (B-ALL) is associated with recurrent mutations that occur in cancer-initiating cells. There is a need to understand how driver mutations influence clonal evolution of leukemia. The E26-transformation-specific (ETS) transcription factors PU.1 and Spi-B (encoded by Spi1 and Spib) execute a critical role in B-cell development and serve as complementary tumor suppressors. Here, we used a mouse model to conditionally delete Spi1 and Spib genes in developing B cells. These mice developed B-ALL with a median time to euthanasia of 18 weeks. We performed RNA and whole-exome sequencing (WES) on leukemias isolated from Mb1-CreΔPB mice and identified single nucleotide variants (SNVs) in Jak1, Jak3, and Ikzf3 genes, resulting in amino acid sequence changes. Jak3 mutations resulted in amino acid substitutions located in the pseudo-kinase (R653H, V670A) and in the kinase (T844M) domains. Introduction of Jak3 T844M into Spi1/Spib-deficient precursor B cells was sufficient to promote proliferation in response to low IL-7 concentrations in culture, and to promote proliferation and leukemia-like disease in transplanted mice. We conclude that mutations in Janus kinases represent secondary drivers of leukemogenesis that cooperate with Spi1/Spib deletion. This mouse model represents a useful tool to study clonal evolution in B-ALL.


Assuntos
Janus Quinase 1/genética , Janus Quinase 3/genética , Leucemia Linfocítica Crônica de Células B/patologia , Proteínas Proto-Oncogênicas c-ets/genética , Proteínas Proto-Oncogênicas/genética , Transativadores/genética , Sequência de Aminoácidos , Animais , Linfócitos B/citologia , Linfócitos B/efeitos dos fármacos , Linfócitos B/metabolismo , Linfócitos B/transplante , Proliferação de Células , Modelos Animais de Doenças , Fator de Transcrição Ikaros , Interleucina-7/farmacologia , Janus Quinase 1/química , Janus Quinase 3/química , Leucemia Linfocítica Crônica de Células B/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutagênese Sítio-Dirigida , Receptores de Interleucina-7/metabolismo , Deleção de Sequência , Transativadores/química
12.
Exp Hematol ; 56: 46-57.e1, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28893618

RESUMO

Activated B-cell diffuse large B-cell lymphoma (ABC-DLBCL) is associated with a poor prognosis compared with other DLBCL types and therefore represents a top priority for developing novel therapies. Lenalidomide, an immunomodulatory drug in trials for treatment of ABC-DLBCL, targets the transcription factor IKAROS for degradation by the cereblon E3 ubiquitin ligase complex. In this study, we investigated whether the gene encoding the transcription factor SPI-B is a target of IKAROS. Using cultured ABC-DLBCL cell lines, we found that high levels of SPI-B expression conferred resistance to lenalidomide. Lenalidomide treatment of ABC-DLBCL cells resulted in downregulation of SPIB at the level of transcription. SPIB was regulated directly by IKAROS through a binding site located in the first intron of the gene. Inhibition of IKAROS binding using CRISPR/Cas9-mediated transcriptional repression downregulated endogenous SPIB transcription. Finally, ectopic expression of IKAROS protected SPIB from downregulation. These results show that the mechanism of action of lenalidomide in ABC-DLBCL cells involves downregulation of SPIB transcription by cereblon-induced degradation of IKAROS. These results have implications for the design of synthetic lethal therapy for the treatment of ABC-DLBCL.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Fator de Transcrição Ikaros/metabolismo , Linfoma Difuso de Grandes Células B/metabolismo , Proteínas de Neoplasias/metabolismo , Proteólise/efeitos dos fármacos , Talidomida/análogos & derivados , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Regulação para Baixo/efeitos dos fármacos , Humanos , Fator de Transcrição Ikaros/genética , Lenalidomida , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/genética , Camundongos , Células NIH 3T3 , Proteínas de Neoplasias/genética , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Talidomida/farmacologia , Fatores de Transcrição/genética , Ubiquitina-Proteína Ligases
13.
Mol Cell Biol ; 37(10)2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28223367

RESUMO

During macrophage development, myeloid progenitor cells undergo terminal differentiation coordinated with reduced cell cycle progression. Differentiation of macrophages from myeloid progenitors is accompanied by increased expression of the E26 transformation-specific transcription factor PU.1. Reduced PU.1 expression leads to increased proliferation and impaired differentiation of myeloid progenitor cells. It is not understood how PU.1 coordinates macrophage differentiation with reduced cell cycle progression. In this study, we utilized cultured PU.1-inducible myeloid cells to perform genome-wide chromatin immunoprecipitation sequencing (ChIP-seq) analysis coupled with gene expression analysis to determine targets of PU.1 that may be involved in regulating cell cycle progression. We found that genes encoding cell cycle regulators and enzymes involved in lipid anabolism were directly and inducibly bound by PU.1 although their steady-state mRNA transcript levels were reduced. Inhibition of lipid anabolism was sufficient to reduce cell cycle progression in these cells. Induction of PU.1 reduced expression of E2f1, an important activator of genes involved in cell cycle and lipid anabolism, indirectly through microRNA 223. Next-generation sequencing identified microRNAs validated as targeting cell cycle and lipid anabolism for downregulation. These results suggest that PU.1 coordinates cell cycle progression with differentiation through induction of microRNAs targeting cell cycle regulators and lipid anabolism.


Assuntos
Ciclo Celular/fisiologia , Diferenciação Celular , Metabolismo dos Lipídeos , Células Mieloides/citologia , Proteínas Proto-Oncogênicas/metabolismo , Transativadores/metabolismo , ATP Citrato (pro-S)-Liase/metabolismo , Células Cultivadas , Fator de Transcrição E2F1/metabolismo , Regulação da Expressão Gênica , Humanos , Metabolismo dos Lipídeos/genética , Macrófagos/citologia , Macrófagos/metabolismo , MicroRNAs , Células Mieloides/metabolismo , Proteínas Proto-Oncogênicas/genética , Transativadores/genética
14.
J Immunol ; 198(4): 1565-1574, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28062693

RESUMO

B cell development and Ig rearrangement are governed by cell type- and developmental stage-specific transcription factors. PU.1 and Spi-B are E26-transformation-specific transcription factors that are critical for B cell differentiation. To determine whether PU.1 and Spi-B are required for B cell development in the bone marrow, Spi1 (encoding PU.1) was conditionally deleted in B cells by Cre recombinase under control of the Mb1 gene in Spib (encoding Spi-B)-deficient mice. Combined deletion of Spi1 and Spib resulted in a lack of mature B cells in the spleen and a block in B cell development in the bone marrow at the small pre-B cell stage. To determine target genes of PU.1 that could explain this block, we applied a gain-of-function approach using a PU.1/Spi-B-deficient pro-B cell line in which PU.1 can be induced by doxycycline. PU.1-induced genes were identified by integration of chromatin immunoprecipitation-sequencing and RNA-sequencing data. We found that PU.1 interacted with multiple sites in the Igκ locus, including Vκ promoters and regions located downstream of Vκ second exons. Induction of PU.1 induced Igκ transcription and rearrangement. Upregulation of Igκ transcription was impaired in small pre-B cells from PU.1/Spi-B-deficient bone marrow. These studies reveal an important role for PU.1 in the regulation of Igκ transcription and rearrangement and a requirement for PU.1 and Spi-B in B cell development.


Assuntos
Linfócitos B/fisiologia , Diferenciação Celular , Regulação da Expressão Gênica , Cadeias Leves de Imunoglobulina/genética , Células Precursoras de Linfócitos B/fisiologia , Proteínas Proto-Oncogênicas/metabolismo , Transativadores/metabolismo , Transcrição Gênica , Animais , Doxiciclina/farmacologia , Ativação Linfocitária/imunologia , Camundongos , Células Precursoras de Linfócitos B/efeitos dos fármacos , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas/deficiência , Proteínas Proto-Oncogênicas/genética , Transativadores/deficiência , Transativadores/genética
15.
Mol Cell Biol ; 35(9): 1619-32, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25733685

RESUMO

Generation of antibodies against T-independent and T-dependent antigens requires Toll-like receptor (TLR) engagement on B cells for efficient responses. However, the regulation of TLR expression and responses in B cells is not well understood. PU.1 and Spi-B (encoded by Sfpi1 and Spib, respectively) are transcription factors of the E26 transformation-specific (ETS) family and are important for B cell development and function. It was found that B cells from mice knocked out for Spi-B and heterozygous for PU.1 (Sfpi1(+/-) Spib(-/-) [PUB] mice) proliferated poorly in response to TLR ligands compared to wild-type (WT) B cells. The NF-κB family member p50 (encoded by Nfkb1) is required for lipopolysaccharide (LPS) responsiveness in mice. PUB B cells expressed reduced Nfkb1 mRNA transcripts and p50 protein. The Nfkb1 promoter was regulated directly by PU.1 and Spi-B, as shown by reporter assays and chromatin immunoprecipitation analysis. Occupancy of the Nfkb1 promoter by PU.1 was reduced in PUB B cells compared to that in WT B cells. Finally, infection of PUB B cells with a retroviral vector encoding p50 substantially restored proliferation in response to LPS. We conclude that Nfkb1 transcriptional activation by PU.1 and Spi-B promotes TLR-mediated B cell proliferation.


Assuntos
Linfócitos B/citologia , Subunidade p50 de NF-kappa B/imunologia , Proteínas Proto-Oncogênicas c-ets/imunologia , Proteínas Proto-Oncogênicas/imunologia , Baço/citologia , Receptores Toll-Like/imunologia , Transativadores/imunologia , Animais , Linfócitos B/imunologia , Linfócitos B/virologia , Proliferação de Células , Lipopolissacarídeos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Subunidade p50 de NF-kappa B/genética , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-ets/genética , RNA Mensageiro/genética , Ativação Transcricional
16.
BMC Genomics ; 16: 76, 2015 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-25765478

RESUMO

BACKGROUND: Spi-B and PU.1 are highly related members of the E26-transformation-specific (ETS) family of transcription factors that have similar, but not identical, roles in B cell development. PU.1 and Spi-B are both expressed in B cells, and have been demonstrated to redundantly activate transcription of genes required for B cell differentiation and function. It was hypothesized that Spi-B and PU.1 occupy a similar set of regions within the genome of a B lymphoma cell line. RESULTS: To compare binding regions of Spi-B and PU.1, murine WEHI-279 lymphoma cells were infected with retroviral vectors encoding 3XFLAG-tagged PU.1 or Spi-B. Anti-FLAG chromatin immunoprecipitation followed by next generation sequencing (ChIP-seq) was performed. Analysis for high-stringency enriched genomic regions demonstrated that PU.1 occupied 4528 regions and Spi-B occupied 3360 regions. The majority of regions occupied by Spi-B were also occupied by PU.1. Regions bound by Spi-B and PU.1 were frequently located immediately upstream of genes associated with immune response and activation of B cells. Motif-finding revealed that both transcription factors were predominantly located at the ETS core domain (GGAA), however, other unique motifs were identified when examining regions associated with only one of the two factors. Motifs associated with unique PU.1 binding included POU2F2, while unique motifs in the Spi-B regions contained a combined ETS-IRF motif. CONCLUSIONS: Our results suggest that complementary biological functions of PU.1 and Spi-B may be explained by their interaction with a similar set of regions in the genome of B cells. However, sites uniquely occupied by PU.1 or Spi-B provide insight into their unique functions.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Linfoma/genética , Proteínas Proto-Oncogênicas c-ets/genética , Proteínas Proto-Oncogênicas/genética , Transativadores/genética , Sequência de Aminoácidos , Animais , Linfócitos B/metabolismo , Linfócitos B/patologia , Sítios de Ligação/genética , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Genoma , Linfoma/patologia , Camundongos , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-ets/metabolismo , Transativadores/metabolismo
17.
J Immunol ; 194(8): 3798-807, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25769919

RESUMO

Spi-C is an E26 transformation-specific family transcription factor that is highly related to PU.1 and Spi-B. Spi-C is expressed in developing B cells, but its function in B cell development and function is not well characterized. To determine whether Spi-C functions as a negative regulator of Spi-B (encoded by Spib), mice were generated that were germline knockout for Spib and heterozygous for Spic (Spib(-/-)Spic(+/-)). Interestingly, loss of one Spic allele substantially rescued B cell frequencies and absolute numbers in Spib(-/-) mouse spleens. Spib(-/-)Spic(+/-) B cells had restored proliferation compared with Spib(-/-) B cells in response to anti-IgM or LPS stimulation. Investigation of a potential mechanism for the Spib(-/-)Spic(+/-) phenotype revealed that steady-state levels of Nfkb1, encoding p50, were elevated in Spib(-/-)Spic(+/-) B cells compared with Spib(-/-) B cells. Spi-B was shown to directly activate the Nfkb1 gene, whereas Spi-C was shown to repress this gene. These results indicate a novel role for Spi-C as a negative regulator of B cell development and function.


Assuntos
Linfócitos B/imunologia , Proliferação de Células , Proteínas de Ligação a DNA/imunologia , Regulação da Expressão Gênica/imunologia , Animais , Proteínas de Ligação a DNA/genética , Camundongos , Camundongos Knockout , Subunidade p50 de NF-kappa B/genética , Subunidade p50 de NF-kappa B/imunologia , Proteínas Proto-Oncogênicas c-ets/genética , Proteínas Proto-Oncogênicas c-ets/imunologia , Baço/imunologia
18.
J Immunol ; 194(2): 595-605, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25505273

RESUMO

Deletion of genes encoding the E26 transformation-specific transcription factors PU.1 and Spi-B in B cells (CD19-CreΔPB mice) leads to impaired B cell development, followed by B cell acute lymphoblastic leukemia at 100% incidence and with a median survival of 21 wk. However, little is known about the target genes that explain leukemogenesis in these mice. In this study we found that immature B cells were altered in frequency in the bone marrow of preleukemic CD19-CreΔPB mice. Enriched pro-B cells from CD19-CreΔPB mice induced disease upon transplantation, suggesting that these were leukemia-initiating cells. Bone marrow cells from preleukemic CD19-CreΔPB mice had increased responsiveness to IL-7 and could proliferate indefinitely in response to this cytokine. Bruton tyrosine kinase (BTK), a negative regulator of IL-7 signaling, was reduced in preleukemic and leukemic CD19-CreΔPB cells compared with controls. Induction of PU.1 expression in cultured CD19-CreΔPB pro-B cell lines induced Btk expression, followed by reduced STAT5 phosphorylation and early apoptosis. PU.1 and Spi-B regulated Btk directly as shown by chromatin immunoprecipitation analysis. Ectopic expression of BTK was sufficient to induce apoptosis in cultured pro-B cells. In summary, these results suggest that PU.1 and Spi-B activate Btk to oppose IL-7 responsiveness in developing B cells.


Assuntos
Apoptose/imunologia , Linfócitos B/imunologia , Interleucina-7/imunologia , Proteínas Tirosina Quinases/imunologia , Proteínas Proto-Oncogênicas/imunologia , Transativadores/imunologia , Tirosina Quinase da Agamaglobulinemia , Animais , Antígenos CD19/genética , Antígenos CD19/imunologia , Apoptose/genética , Linfócitos B/citologia , Proliferação de Células , Deleção de Genes , Expressão Gênica , Interleucina-7/genética , Camundongos , Camundongos Knockout , Proteínas Tirosina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Transativadores/genética
19.
Gene ; 533(1): 123-31, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24140127

RESUMO

High titers of anti-citrullinated protein/peptide antibodies (ACPAs) have been detected in sera of rheumatoid arthritis (RA) patients, implicating citrullinating enzymes in the pathogenesis of RA. Peptidylarginine deiminase type IV (PAD4) is a member of the PAD family of citrullinating enzymes and has been linked to RA. Therefore, our aim was to determine how transcription of PAD4 is regulated in the human myeloid lineage. We located the PAD4 transcription start site and promoter and phylogenetic comparisons of the area identified a 200 bp conserved region. Bioinformatics analysis predicted the presence of a NF-κB binding site and we tested this via luciferase assays. Intriguingly, mutation of the predicted NF-κB site significantly increased biological activity. We used RT-qPCR to quantify PAD4 expression in HL-60 cells treated with TNF-α to activate the canonical NF-κB pathway and found that PAD4 mRNA was reduced in response to TNF-α treatment. Finally, we used chromatin immunoprecipitation (ChIP) to determine NF-κB enrichment at the PAD4 promoter and the p50 subunit of NF-κB was more highly enriched than p65 at the PAD4 promoter. These results suggest that the p50 subunit of NF-κB may play a role in the repression of PAD4 transcription during inflammation.


Assuntos
Regulação Enzimológica da Expressão Gênica , Hidrolases/genética , Células Mieloides/metabolismo , NF-kappa B/metabolismo , Regiões Promotoras Genéticas , Animais , Sequência de Bases , Sítios de Ligação , Imunoprecipitação da Cromatina , DNA/genética , Células HL-60 , Humanos , Hidrolases/química , Camundongos , Dados de Sequência Molecular , Células Mieloides/enzimologia , Proteína-Arginina Desiminase do Tipo 4 , Desiminases de Arginina em Proteínas , Homologia de Sequência do Ácido Nucleico
20.
Exp Hematol ; 42(3): 204-217.e1, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24316397

RESUMO

Acute myeloid leukemia (AML) is characterized by increased proliferation and reduced differentiation of myeloid lineage cells. AML is frequently associated with mutations or chromosomal rearrangements involving transcription factors. PU.1 (encoded by Sfpi1) is an E26 transformation-specific family transcription factor that is required for myeloid differentiation. Reduced PU.1 levels, caused by either mutation or repression, are associated with human AML and are sufficient to cause AML in mice. The objective of this study was to determine whether reduced PU.1 expression induces deregulation of the cell cycle in the myeloid lineage. Our results showed that immature myeloid cells expressing reduced PU.1 levels (Sfpi1(BN/BN) myeloid cells) proliferated indefinitely in cell culture and expanded in vivo. Transplantation of Sfpi1(BN/BN) cells induced AML in recipient mice. Cultured Sfpi1(BN/BN) cells expressed elevated messenger RNA transcript and protein levels of E2F1, an important regulator of cell cycle entry. Restoration of PU.1 expression in Sfpi1(BN/BN) myeloid cells blocked proliferation, induced differentiation, and reduced E2F1 expression. Taken together, these data show that PU.1 controls cell cycle exit in the myeloid lineage associated with downregulation of E2F1 expression.


Assuntos
Ciclo Celular/fisiologia , Fator de Transcrição E2F1/metabolismo , Células Mieloides/metabolismo , Proteínas Proto-Oncogênicas/fisiologia , Transativadores/fisiologia , Doença Aguda , Animais , Animais Recém-Nascidos , Ciclo Celular/genética , Células Cultivadas , Regulação para Baixo , Doxiciclina/farmacologia , Fator de Transcrição E2F1/genética , Feminino , Immunoblotting , Subunidade gama Comum de Receptores de Interleucina/deficiência , Subunidade gama Comum de Receptores de Interleucina/genética , Leucemia Mieloide/genética , Leucemia Mieloide/metabolismo , Leucemia Mieloide/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Células Mieloides/efeitos dos fármacos , Células Mieloides/transplante , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas Proto-Oncogênicas/deficiência , Proteínas Proto-Oncogênicas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Baço/citologia , Baço/metabolismo , Análise de Sobrevida , Transativadores/deficiência , Transativadores/genética , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...